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Executive Summary

This report describes and illustrates the use of the routine MAXFITS. This
routine estimates statistics of extremes corresponding to arbitrary dynamic
load or response processes. It estimates statistics of extremes from limited-
duration time histories, which may arise either from experimental tests or
computationally expensive simulation. A wide range of statistics—e.g., mean,
standard deviation, and arbitrary fractiles—can be estimated for-an extreme
over an arbitrary duration 7. The routine also assesses, through boot-
strapping methods, the statistical uncertainty associated with these extremal
statistics due to the amount of data at hand. This will consistently reflect the
_ growing uncertainty as, for example, we extrapolate to (1) increasingly high
fractiles of the extreme response; or (2) increasingly long target durations T,
relative to the length of the input signal.

Central to this routine is a core group of algorithms used to probabilis-
tically model various aspects of the dynamic process of interest. The user is
permitted to model either the time history itself, a set of local peaks (max-
ima), or a coarser set of global peaks (e.g., 5- or 10-minute maxima). A
number of distribution types are included for these various purposes. For
example, normal distributions and their 4-moment transformations (“Her-
mite”) are included as likely candidates to apply directly to the process it-
self. Weibull models and their 3-moment distortions (“Quadratic Weibull”)
have been found particularly useful in modelling local peaks and ranges. Ex-
tremal, Gumbel models are also included to permit natural choices of global
peaks. These algorithms build on the distribution library of the FITS routine
documented in RMS Report 31 (Kashef and Winterstein, 1998).

To focus on upper tails of interest, the user can also supply an arbitrary
lower-bound threshold, .., above which a shifted version of a positive ran-
dom variable model—exponential, Weibull, or quadratic Weibull—is fit. In
estimating the annual maximum response, the program automatically adjusts
for the decreasing rate of response events as the threshold x4, is raised.

This program is intended to be applicable to general cases of dynamic re-
sponse. A particular example shown here concerns the extreme offset statis-
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tics of a floating spar buoy offshore structure. This parallels the ongoing
floating structure research carried out by the Offshore Techonology Research
Center, who has adopted the spar as a “theme structure” for both experi-
mental and analytical study.
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1 Introduction

1.1 Background and Motivation

This report describes and illustrates the use of the routine MAXFITS. This
routine estimates statistics of extremes corresponding to arbitrary dynamic
load or response processes. It estimates statistics of extremes from limited-
duration time histories, which may arise either from experimental tests or
computationally expensive simulation. A wide range of statistics—e.g., mean,
. standard deviation, and arbitrary fractiles—can be estimated for an extreme
over an arbitrary duration 7. The routine also assesses, through boot-
strapping methods, the statistical uncertainty associated with these extremal
statistics due to the amount of data at hand. This will consistently reflect the
growing uncertainty as, for example, we extrapolate to (1) increasingly high
fractiles of the extreme response; or (2) increasingly long target durations T
(relatively to the length of the input signal.

Typical problems that motivated this study include the statistical anal-
ysis of extreme wave and wind loads/responses, based on limited data from
either model or field tests. Of particular interest has been the extreme off-
set motions of a floating “spar buoy” offshore structure, the theme structure
adopted by the Offshore Technology Research Center for both experimental
and analytical study. Such motions combine lightly damped, long-period mo-
tions in both surge and pitch modes—natural periods of roughly 5min and
1.5min, respectively. In view of these long-period cycles, the amount of in-
dependent information in a 1-hour model test becomes increasingly limited.
A sample problem is included here based on a (simulated) 1-hour history of
spar motion, obtained from a nonlinear diffraction prediction code (Ude et

al, 1995).




1.2 Problem Statement: What We Seek

In general, we focus here on the extreme value X4, of a random process
X (t), over a duration T that reflects the stationary duration of the event of

interest:
Xpmos =maxX(t); 0<t<T 1)

Minimum values can generally be estimated in turn by replacing X(¢) by
—X(t), 1/X(t), or another appropriate transformation. “Two-sided” max-
ima, e.g. of | X (t)|, are less directly handled unless symmetry arguments can
be applied; e.g., treating max | X| over duration T as statistically equivalent
- to max X over duration 27

Because Xpq, will vary in a random fashion over various histories of
duration T, we seek various statistics of X,,,;. A first central measure is given
by its mean value, py, ... If we supplement this by its standard deviation,
OXme.- We have sufficient information to fit a fairly general, two-parameter
distribution function to X,,,;. Alternatively, we may directly seek various
fractiles, z,, defined so that

P[X oz < z,) = p for fixed p (2)

Here the probability level, p, is specified and the consistent fractile z, is
sought. For example, with p=0.50, 2 5 is a representative or “median” level,
which is equally likely to be exceeded or not in a given duration T. Upper
fractiles of £ may be useful to report to cover response variability; for exam-
ple, it has recently been suggested that the p=.85 or .90- fractile response
maximum provides a useful estimate, when used with the 100-year seast-
ate, to predict the 100-year response (Engebretsen and Winterstein, 1998;
Winterstein and Engebretsen, 1998).

Fmally, we also may invert Eq. 1; i.e., seek the probablhty level p for
which a specified z is not exceeded:

P[Xmez < z] = p for fixed x 3)

The MAXFITS routine permits the user to obtain statistics in the form of
either Eq. 2 or Eq. 3.




1.3 Problem Methodology: What We Model

We may seek to model a random process at a variety of different time scales.
We begin here at the finest time scale, and proceed to increasingly global

time scales.

Model of the entire process, X(t). At the finest time scale, we may seek
to model the cumulative distribution function (CDF) F;(z) of the ran-
dom process z(t) selected at arbitrary time ¢:

F(z)=P[X(f) <a] @)

In the most common case X(t) is assumed Gaussian, in which case
Fx(z) can be evaluated numerically in terms of only the mean px and
standard deviation ox of the process X(t):

Fy(z) =@ (“ - "X) (5)

ox

in which ®(u) is the standard normal distribution function.

Model of local peaks, Y. We may instead choose to ignore all points of
the time history except its local peaks, typically defined as the largest
peak per upcrossing of the mean level. For a narrow-band normal pro-
cess, this results in a Rayleigh distribution for Y, which agam depends
only the mean pux and standa.rd deviation ox:

Fe(y) =1-exp [—ﬁf‘—")—] ©)

202
for y > 0 only.

Model of global peaks, Z. Finally, we may instead choose the maximum
value Z over a still coarser time scale, comprising multiple peaks (e.g.,
10-minute maxima, 1-hour maxima). As when proceeding from the
process to local peaks, this step has the advantage of focusing more
locally on the upper tail of interest, and the corresponding disadvantage
of using less detailed information about the time history.
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In generally, the distribution function of Z is commonly estimated from
that of Y as follows:

Fz(z) = [Fy ()" (7
in which N here is the number of local peaks (Y values) within the duration
over which Z extends (again, 10 minutes, 1 hour, etc.) Eq. 6 assumes both
that the number of peaks, N, is deterministic and that their levels are mu-
tually independent. Neither assumption is strictly correct, but corrections
generally become insignificant as we consider extremes in the upper tails of
the response probability distribution.

In the Gaussian case, combining Egs. 6-7 yields the result

A exp (_Ne—(z—#x)2/2°’§() (8)

The MAXFITS routine permits the user to select both which quantity is directly
input—X (t), Y, or Z—and also to choose which quantity is to be probabilis-
tically modelled: either Y or Z (although, as noted below, in a particular
distribution case (IDIST=11), a distribution of Y is assigned based on the
statistics of X).

The various distributions available within MAXFITS are described in sub-
. sections that follow. Once estimated, Fy-(y) or Fz(z) can be used to estimate
the distribution of Xyns, in Eq. 1, in a manner analogous to Eq. 7:

Fpos(®) = PXmaz < 2] = [Fe@™  (9)
= [Fz(2)"? (10)

If Fy has been fit we use Eq. 9, in which Ny is the number of local peaks
expected in time T'. If F; has instead been fit we use Eq. 10, in which Nz is
the number of global peaks (e.g., number of 10-minute or 1-hour segments)
in time 7. '

The mean and standard deviation, py,,.. and ox,,., corresponding to

the distribution of X,,,; given above is found in MAXFITS by numerically
integration, using Gaussian quadrature procedures.
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1.4 Uncertainty Estimates through Bootstrapping

Finally, bootstrapping methods (e.g., Efron and Tibshirani, 1993) are used

here to estimate the statistical uncertainty associated with any/all of our ‘
estimated statistics of Xz The method is conceptually straightforward,
generating multiple “equally likely” data sets by simulating, with replace-
ment, from the original data set. Thus some of the data values will be re-
peated multiple times, while others will be omitted, in any single bootstrap
sample (which is of the same size as the original data set). The same esti-
mation procedure performed for the original data set is repeated for each of
_ the bootstrapped samples, and the net statistics on the results are collected

and reported.

The bootstrap method is “non-parametric” by definition, in that it oper-
ates with no additional information beside the actual data values. Alterna-
tive approaches might fit a parametric model, either statistical or physical,
to generate additional “equally likely” samples from which to infer sampling
variability levels. Such approaches may confer advantages in some cases but
are generally problem-specific; the bootstrap method is adopted here primar-
ily due to its virtue of generality.

1.5 Distribution Fitting; Relation to Other Algorithms

Central to this routine is a core group of algorithms used to probabilistically
model various aspects of the dynamic process of interest noted above: the
process X, its local peaks Y, or its global peaks Z. The set of distribution
types available are, with the sole exception of the 4-moment Hermite model,
the same as those available in the routine FITS, as documented in RMS Re-
port 31 (Kashef and Winterstein, 1998). Again apart from the Hermite case,
this distribution set was chosen to provide relatively robust fits, preserving
two or at most three moments.

In this sense, both FITS and MAXFITS are intended to complement the pre-
viously distributed routine, FITTING, documented in RMS Report 14 (Win-




terstein et al, 1994). The FITTING routine implements relatively complex,
four-moment distribution models, whose parameters are fit with numerical
optimization routines. While these four-moment fits can be quite useful and
faithful to the observed data, their complexity can make them difficult to
automate within standard fitting algorithms, and repeated application over
sets of bootstrapped samples. As noted above, however, we do include the
4-moment Hermite distribution as implemented in FITTING, in view of its
growing use in a variety of applications.

To focus on upper tails of interest, the user can also supply an arbitrary
lower-bound threshold, z;.,,, above which a shifted version of a positive ran-
" dom variable model—exponential, Weibull, or quadratic Weibull—is fit. (In
estimating the annual maximum response, the program automatically adjusts
- for the decreasing rate of response events as the threshold Ziow 1S raised.)




1.6 Available Distribution Types

Specific distributions currently included in MAXFITS to estimate F;(z) include
the following, as catalogued by the distribution index IDIST:

IDIST=1: Normal Distribution

IDIST=2: Lognormal Distribution

IDIST=3: Exponential Distribution

" IDIST=4: Weibull Distribution

IDIST=5: Gumbel Distribution

IDIST=6: Shifted Exponential Distribution
IDIST="7: Shifted Weibull Distribution

IDIST=8: Quadratic Weibull Distribﬁtion
 IDIST=9: Shifted Quadratic Weibull Distribution
IDIST=10: Four-Moment Hermite Distribution

IDIST=11: Hermite Distribution Model of Peaks, based on four moments of
the underlying process

The distributions IDIST=1 through 5 and 8 are all fit to statistical moments
of all available data. The single-parameter exponential preserves only the
mean m, of the data, while the normal, lognormal, Weibull, and Gumbel
preserve both the mean and standard deviation o, estimated from the data.
The quadratic Weibull preserves the first three moments of the data (mean,
standard deviation, and skewness). The Hermite model (IDIST=10) is per-
haps the most general, seeking to preserve the first four moments of the data
(mean, standard deviation, skewness, and kurtosis). The Hermite model of
peaks (IDIST=11) is special, in that it takes as input the first four moments




of the underlying random process X (t), and provides a consistent distribution
of the local peaks Y.

Most of the one-sided distributions above (exponential, Weibull, and
quadratic Weibull) are also generalized here by shifting (IDIST=6, 7, and
9). These impose a user-defined lower threshold z;.,, ignore data below z;,,,,
and fit standard exponential/Weibull/quadratic Weibull models to z — Zj4,
based on observed moments. These are perhaps the most relevant distribu-
tions when modelling local peaks, Y, which generally have a broadly skewed
distribution away from a well-defined lower bound. (In estimating the annual
maximum response, the program automatically adjusts for the decreasing
" rate of response events as the threshold z;,, is raised.)

The result aims to provide the user with a suite of smooth probability
models, to be fit throughout the body of the available data. It does not
directly address various special topics of data fitting; e.g., selective tail fit-
ting, fitting bimodal models to hybrid data, etc. Some of these issues can
be addressed, in a limited way, through the use here of the shifted mod-
els (IDIST—-6 7, and 9). In this way the user can focus the dlstrlbutxon
modelling resources on the extreme response levels of interest.

More specific tail-fitting procedures have not been given here, because
optimal use of these tends may be rather problem-specific. In the same vein
our extremal models are limited here to so-called “Type I” behavior, leading
to (shifted) exponential distributions of peaks over a given threshold and
to Gumbel distributions of annual maxima. Type II and III distributions
are ill-suited to our moment-fits, due to potential moment divergence (Type
IT) or to the difficulty in predicting truncated dlstnbutlons (Type III) from
moment information.

1.7 Limitations

An important limitation is that for IDIST=11 the process X (t) is assumed
input, and its moments used to obtain a consistent distribution to assign to
the local peaks, Y. In this case we do not permit the bootstrapping option,
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as one would distort the time-scale of variation of X (t) if its values were
merely sampled with replacement over the time-axis.

NMAX, the maximum number of data, has been set to 45000. This has been
set in a PARAMETER statement in the main driver program to MAXFITS. This
is a rather arbitrarily selected limit, and can be reset by the user without
fundamental consequence.




2 Distribution Fitting: Routines

The routine MAXFITS has been separated into three files containing Fortran
source code: maxf.f contains the main program, aux_fits.f contains aux-
iliary subroutines used by FITS, and aux_maxf.f contains all additional sub-
routines used by MAXFITS.

Specifically, the fitting algorithm includes the following set of subroutines,
contained in aux_fits.f: ’

CALMOM: Estimates the mean m,, standard deviation o, skewness a3 and
kurtosis a4 from an input set of data. These are based on unbiased -
estimates of the cumulants ky=mg, k=02, k3=a302, and ks=(aq—3)0?.
If the user includes an optional lower limit z;0,, moments of the shifted
variable (Z — Zj)t=max(0, £ — z4,) are estimated.

DISPAR: Based on the sample moments estimated in CALMOM, DISPAR seeks
a consistent set of distribution parameters. The interpretation of these
parameters depends on the distribution type selected by the user. Ap-
pendix A includes a complete listing of the distribution functions and
their parameters.

GETCDF: For the user-defined distribution type with the distribution param-
eters from DISPAR, this routines estimates the cumulative distribution
function value, F(z)=P[Outcome < z] for given input z value.

FRACTL: For the user-defined distribution type with the distribution param-
eters from DISPAR, this routines estimates the fractile z corresponding
to a specified input value of the probability p=F(z)=P[Outcome < z].

QDMOM: Uses Gaussian quadrature to estimate the first four moment of the
theoretical fitted distribution. These can be compared with the sample
moments from the data, as given by CALMOM, to verify the accuracy of
the fitted model—and in the case of the higher moments not used in
the original fitting, to test its accuracy.
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The routines GETCDF and FRACTL, which supply general distribution func-
tions and their inverses, may also be useful in other stand-alone applications;
e.g., to create a distribution library for standard FORM/SORM or simulation
analyses (Madsen et al, 1986), or for use with new Inverse FORM algorithms
(Ude and Winterstein, 1996). .

The additional subroutines contained in aux_maxf.f are as follows:

DATAPREP: Prepares the data for the analysis. The user specifies whether
the input data represent the entire process X (t), the local peaks Y,
.or the global peaks Z. DATAPREP selects, from the input information,
the appropriate data values to be retained for purposes of probabilistic
modelling/fitting.

DISTINT: Finds the mean and standard deviation, px,,,., and o0x,,,., of the
maximum value X ., by numerical integration, using Gaussian quadra-

ture methods.

RESAMP: Generates a new, “equally likely” dataset of the same size from the
original data by sampling with replacement. This is ued to produce
bootstrap estimates of the standard deviation of our estimates.

CALCRES: Handles administrative work involved with bootstrapping, such
as keeping track of running sums, etc.

11




3 Input Format and Spar buoy Example
3.1  Data Input

The file containing data are read in free format, one datum per line. Non-numerical input

is interpreted as commentary, and is ignored. The input file only contains the data that

needs to be fitted. The first line does not contain the duration of the database, contrary to
S”

We will illustrate the use of “MAXFITS” though a simple example, which is the surge
response of a spar buoy. The input is discussed in the following paragraph. The output is
discussed in the next chapter. The data set analyzed here contains one hour of simulated
data, from which the surge component is filtered. The natural period of the spar buoy is
approximately 5 minutes in surge hence there are only 12 peaks, which should illustrate
the implications of dealing with limited data.

The input file is stored in surgel.ts. The time series is plotted in fig 1.

3.2 Runtime Input: Batch Mode
We desire the following situation:

Results should be written to a file named weibulll.out

2. Distribution results are to be written for x (surge response) values ranging from
XMIN=5 to XMAX=17.5m, at increments of DX=1m

The surge data is stored in the file surgel.ts

The user desires to fit a shifted Weibull distribution (IDIST=7) to these data.
IDIST=4 should only be used if it is certain the mean of the underlying process
equals 0. If this is not the case the fit should be shifted over the mean, or any other
threshold if preferred.’

5. The user desires to determine the accuracy of the results by producing 100
bootstrap estimates of all the predictions

[u—y
.

W

The type of input provided is sﬁeciﬁed by the INSWITCH variable. The available options
are:

! Although it is inconvenient for the user to have to determine the mean of the process, there is no other
method. The only way “MAXFITS” can determine the mean is if the entire process is input. In this case if
the user specifies a value less than —1000 for XLOW “MAXFITS” will automatically use the mean of the
process as threshold.

12




badl o

The entire process

The local peaks of the process

The global peaks of the process (the number of global peaks for equal time
segments is specified with the NSEG variable)

The type of data we wish to use for the analysis is specified with the DATASWITCH
variable, which has the same options as the INSWITCH variable.

The desired output can be selected with the OUTSWITCH variable, for which the user
can select the following values:

1.

The user inputs a lower limit for the input variable, an upper limit and a step size
(XMIN, XMAX, DX). “MAXFITS” will output the probability of exceedence for
each specified response. Bootstrapping will give a mean and standard deviation
for the response.

The user inputs specific response values, by first specifying the number of inputs
(NOUTPTS), and then the response fir which the probability of exceedence will
be calculated. Bootstrapping will give a mean and standard deviation for the
response.

MAXEFITS determines the entire distribution of the probability of exceedence for
a specified number of points. Probabilities will range from 1/N to 1-1/N.
Bootstrapping will give a mean and standard deviation for the probability of
exceedence. o '

The user inputs specific probability levels, by first specifying the numbers of

. inputs (NOUTPTS), and then the probability of exceedence for which the

associated response will be calculated. Bootstrapping will glve a mean and
standard deviation for the probability of exceedence.

The previous options cause that the input lines will be different depending on the output
specified on the second line of the batch file. Examples of input for all 4 possible output
options are given. The batch file for the example is named weibulll.in, and contains the
following input lines:

Weibulll.out: Name of output file

121

: INSWITCH, .DATASWITCH, OUTSWITCH

7.5 17.5 1. : XMIN, XMAX, DX?

1. 6. (NSEG): Duration of input file and target period®, (#global peaks)
100 : Number of bootstrap samples

surgel.ts : Name of input file

7 : Distribution type (IDIST), see Appendix A for deflnltlons

0.41

: XLOW, shift only for shifted distributions

2 Note that selecting XMIN too low, or XMAX too high may cause underflow errors
3 Units are free, as long as they are consistent ,
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Alternatively the following batch files can be used for OUTOPT = 2,3,4 respectively:

weibulll.out:
122 :
3 (or Noyepts) :

Name of output file
INSWITCH, .DATASWITCH, OUTSWITCH
NOUTPTS, no. of exceedence probabilities to be calculated

: First fractile for which P will be calculated

15.
20.

Xnou tpts

1. 6. (NSEG):
100 :
surgel.ts
-

0.41

weibulll.out:
123 :
99

1. 6. (NSEG):
100
surgel.ts
7

0.41 :

weibulll.out:
12 4 :
3 (or NOUcp:s):

S 0.01
0.001 :
0.0001

P noutpts

1. 6. (NSEG)
100

surgel.ts :
7 .
0.41 :

: Second extreme for which P will be calculated
: Third extreme for which P will be calculated

Nth extreme for which “MAXFITS” will calculated the
probability of exceedence

Duration of input file and target period

Number of bootstrap samples

Name of input file

Distribution type (IDIST), see Appendix A for definitions
XLOW, shift only for shifted distributions

Name of output file
INSWITCH, . DATASWITCH, OUTSWITCH

: hkmww; the number fractiles that will be calculated equal

probability intervals (0.01-0.99)
Duration of input file and target period
Number of bootstrap samples

: Name of input file
: Distribution type (IDIST), see Appendix A for definitions

XLOW, shift only for shifted distributions

Name of output file

INSWITCH, .DATASWITCH, OUTSWITCH

NOUTPTS, no. of probabilities for which fractiles will be
calculated

: First probability of exceedence

Second probability of exceedence
Third probability of exceedence

Nth probability of exceedence for which “MAXFITS” will
calculate the fractile

Duration of input file and target period

Number of bootstrap samples

Name of input file .

: Distribution type (IDIST), see Appendix A for definitions
‘XLOW, shift only for shifted distributions

14




By typing the following command:

maxfits < weibulll.in

A file named weibulll.out will be written whose content is discussed in the next section.
During the execution the user will be prompted for terminal inputs. These can simply be
ignored (or directed toward the null device) in this batch mode operation.

3.2 Runtime Input: Interactive Mode

If the user simply types “maxfits”, he or she will prompted for each input, which is the
same as what is described in the previous paragraph. The prompts are accompanied by
interactive explanations that will list the options the user has. The interactive mode may
be particularly useful for first-time users. (The text with the input prompts is written to
the logical unit IOERR, which is set to 0 in the driver program. The user can reset this if

necessary.) : ,

The following is a screen dump of the terminal input and the user’s response. Lines
beginning with ‘>” are input prompts generated by the program. Other lines are the
user’s response, which should match the input given in the first batch file in the previous
paragraph. :

Weibulll.out

** ENTER THE TYPE OF DATA IN THE DATA FILE,
THE TYPE OF DATA TO BE USED FOR THE ANALYSIS,
AND THE OUTPUT SWITCH:

INSWITCH/DATASWITCH = 1 ... POINTS OF THE PROCESS
INSWITCH/DATASWITCH = 2 ... LOCAL PEAKS
INSWITCH/DATASWITCH = 3 GLOBAL PEAKS

DATASWITCH >= INSWITCH

OUTSWITCH = 1 ... ENTER XMIN,XMAX,DX -> Pl,..PN
OUTSWITCH = 2 ... ENTER X1,X2,...,XN -> P1..PN
OUTSWITCH = 3 ... ENTER NP ~-> X1..PN
OUTSWITCH = 4 ... ENTER P1,P2,...,PN -> X1..PN

ENTER INSWITCH, DATASWITCH,OUTSWITCH:

[V
=

MIN X VALUE AT WHICH TO OUTPUT CDF
XMAX MAX X VALUE AT WHICH TO OUTPUT CDF

: DX INTERVAL OF X VALS WHERE CDF IS OUTPUT

ALL THREE VALUES ON SAME LINE; E.G.

*%* ENTER XMIN

0.5 10.0 0.5

VVVVVVVVVVYVERERVVVVVVVVVVVYVYVYVVY

GIVES OUTPUT AT 20 X VALUES FROM 0.5 TO 10.0

15




VVVVEREVVVYRYYVY

> ENTER XMIN,XMAX,DX:
7.5 17.5 1.
>
> ** ENTER THE DURATION OF THE DATA FILE
> AND THE TARGET DURATION FOR THE PREDICTION:
> ASSURE TTARGET IS SUFFICIENTLY LONG
TO CONTAIN AT LEAST ONE CYCLE
Ttot, Ttarget:
. 6.
** ENTER THE NUMBER OF BOOTSTRAP SAMPLES TO BE TAKEN:
FOR NO BOOTSTRAPPING ENTER bsN=0
bsN:
o0
** ENTER FILENAME WHERE DATA ARE STORED,
ENTER INPUT FILENAME:
surgel.ts

** ENTER IDIST =INDEX OF DISTRIBUTION TYPE TO BE FIT
CURRENT OPTIONS:

IDIST = 1 ... NORMAL
IDIST = 2 ... LOGNORMAL

IDIST = 3 ... EXPONENTIAL

IDIST = 4 ... WEIBULL

IDIST = 5 . GUMBEL

IDIST = 6 ... SHIFTED EXPONENTIAL

IDIST = 7 ... SHIFTED WEIBULL

IDIST = 8 ... QUADRATIC WEIBULL

IDIST = 9 . SHIFTED QUADRATIC WEIBULL
IDIST = 10 . HERMITE (PROCESS)

IDIST = 11 . HERMITE (PEAKS)

ENTER IDIST:

YOU HAVE SELECTED A SHIFTED DISTRIBUTION MODEL

** ENTER XLOW =LOWER BOUND THRESHOLD, BELOW WHICH
ALL DATA WILL BE IGNORED

ENTER XLOW :

OVVVVVVVNAVVVVVVVVVVVVVYVYVY

.
(=3
=
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4 Output Format and Spar Buoy Example

Below is the output file “weibulll.out” that resulted from the manual input listed in the
previous paragraph. The format is the same for all output options. Note that the output is
formatted such that it can be directly plotted using “gnuplot”. The lines starting with #
will be treated as comments by “gnuplot”.

The first section echo’s the input, and how much data was actually used for the analysis.

The second section provides summary statistics for the data file considered. These
include on the first line the sample moments from the data, and on the second line the
standard deviation of the bootstrap predictions.

The third section gives the moments that are implied by the fitted distribution in the same
way as they are given for the original data.

The fourth section reports the distribution parameters. The standard deviation of the
bootstrap predictions is given on the second line. The definition of the distribution
parameters is given in appendix A.

The fifth section gives the mean and standard deviation of the distribution of the extreme
value in the target period. The bootstrap standard deviations of these values are reported
on the second line.

The last section reports the actual distribution of the extreme value in the target period.
The first column reports the fractiles that were input by the user in this case, but which
could also have been calculated if the user had specified probability levels in the input
(OUTOPT = 3,4). The second column reports the standard deviation of the in this case
100 predictions of the fractile. As the fractile is input here this column consists of zeros.
The third column reports the probability of exceedence of the fractile. The fourth reports
the bootstrap standard deviation of this probability, and indicates the accuracy of the
prediction.

#

# RESULTS FOR: surgel.ts

# TIME DURATION OF DATABASE: 1.00

# CONTAINING: 7200 POINTS OF THE PROCESS
# TARGET TIME DURATION: 6.00

# DIST TYPE SELECTED: SHIFTED WEIBULL .

# FITTED TO: 11 LOCAL PEAKS

#

NO. OF BOOTSTRAP SAMPLES: 100
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** NOTE: MOMENTS, DIST PARMS APPLY HERE TO X-XLOW; XLOW= 0.4100E+00

SKEWNESS, KURTOSIS)
0.2644E+01
0.1152E+01

MOMENTS FROM SAMPLE DATA ( MEAN, SIGMA,
data: 0.5023E+01 0.2661E+01 -0.4110E+00
stdv: 0.7448E+00 0.4486E+00 0.5298E+00

MOMENTS FROM FITTED DIST ( MEAN, SIGMA,
data: 0.5023E+01 0.2661E+01 0.6508E+00
stdv: 0.7448E+00 0.4486E+00 0.3768E+00

SKEWNESS, KURTOSIS)
0.3283E+01
0.6239E+00

DISTRIBUTION PARAMETERS (SEE DOCUMENTATION FOR DEFINITION)

B R I R SR R I R T E R CE R R R KK

data: 0.5023E+01 0.2661E+01 0.1971E+01 0.5666E+01 0.0000E+00
stdv: 0.7448E+00 0.4486E+00 0.9153E+00 0.8210E+00 0.0000E+00
. MEAN STDV (of MAX response in Ttarget):
 data: 12.87 1.57
stdv: 1.58 0.55
X stdv (X) 1-Fxmax stdv (1-Fm)
0.7500E+01 O0.0000E+00 0.1000E+01 0.4344E-01
0.8500E+01 O0.0000E+00 0.9999E+00 0.1212E+00
0.9500E+01 O0.0000E+00 0.9956E+00 0.1930E+00
0.1050E+02 0.0000E+00 0.9495E+00 0.2880E+00
0.1150E+02 O0.0000E+00 O0.7899E+00 0.3124E+00
0.1250E+02 0.0000E+00 0.5382E+00 0.2733E+00
0.1350E+02 0.0000E+00 O0.3037E+00 0.2119E+00
0.1450E+02 O0.0000E+00 0.1481E+00 0.1535E+00
0.1550E+02 0.0000E+00 0.6481E-01 0.1060E+00
0.1650E+02 0.0000E400 0.2610E-01 0.7047E-01
0.1750E+02 O0.0000E+00 0.9807E-02 0.4539E-01

As the Weibull distribution only uses two parameters only the first two statistical
moments can be reproduced by the fitted distribution. The skewness and kurtosis differ

somewhat.

The original data, and the Weibull-fit which, is similar to the output of “FITS”, are shown
in figure 2. The two extra lines reflect the result if the fit had been biased 10% upward or
downward giving a feel for how well the data points are matched by the model.

Figure 6 shows the distribution of the 6-hour extreme surge response produced by
“MAXFITS”, and lines reflecting this value plus and minus two bootstrap standard
deviations, which would be the 95% confidence interval if we assume the distribution of
our predicted fractiles to be normally distributed. This distribution has the previous
distribution as underlying distribution, which it raises to the power of the number of
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peaks in 6 hours (66 in this case). The graph clearly shows that the accuracy becomes
increasingly less for lower probabilities of exceedence. If one would like to estimate the
85% fractile, which is now proposed for some long-term analyses, it would have a
standard deviation of 4.27. The alternative would be the mean 6-hour extreme response,
which has a standard deviation of 1.58. The CoV’s are respectively 0.29 and 0.12. In
order to achieve the same level of accuracy it would require use to have (0.29/0. 12> =
5.8 times as much data. _

It is important to note the effect of the amount of data that is used for the fit on the
accuracy of our predictions. Figures 6,7,8,and 9 illustrate this. They show the results for
the different components and the total of the response (horizontal offset at 54m MWL) of
a spar buoy. The number of peaks, the mean of the distribution of the 6-hourly extreme,
and its standard deviation are reported in the following table.

Estimate Stdv CoV Peaks

surge 12.87 158 012 M1
pitch 10.98 0.87 008 53
wave freq. 35.11 29 0.08 246
total 11.28 0.5 0.04 136

The standard deviations are consistent with the graphs, which clearly show that less peaks
give a larger bootstrap standard deviation, and therefore less accurate results. The
underlying distributions and the original data are plotted in figures 2,3,4, and 5 to
demonstrate the quality of the fit. :
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5 Problems / Pitfalls
5.1 Underflow errors

Enter a too low XMIN:
Xmin is way below the data and therefore a very low probability associated with it. This
can cause underflow errors.

Enter a too high XMAX:
MAXEFITS has to extrapolate very far to very low probablhtles of exceedence, which may
cause underflows

20
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Figure 1: Simulated time series of surge motion.
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Figure 7: Predicted distribution of 6-hour extreme, pitch component.
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